Coking Plant, Zeche Zollverein, Essen

Recovering old ZX Spectrum tapes, Part 2

The ZX Spectrum was a comparable cheap home computer, and thus the tape loading and saving mechanisms have not been very sophisticated. The tape recording is just a stream of short waves (0 bit) and long waves (1 bit). The stream starts with a leader signal (a series of even longer waves) and a single sync pulse. So, in the theory, reading a tape recording means measuring single wave lengths, by taking the time between two zero-crossings, and converting them into a sequence of bytes.

But then again, we are dealing with 1980's analog technique. In practice, we will find signals like this. A click produced an additional zero-crossing that is to be ignored. Also, the amplitudes and DC offsets change all the time.

And pooof... There went another week of nightly hacking Python code, having very close looks at audio waves, and searching for clues about why tzxwav won't behave like I expect it to behave. But I think the result is worth looking at now! tzxwav now reads almost all of my tape samples without those dreaded CRC errors. If there are CRC errors, the sample was usually so damaged that it would need manual restauration.

And as a bonus, it is now almost twice as slow as before. 🤭 But speed was never a goal anyway, as people are likely to convert their old tapes only once.

Recovering old ZX Spectrum tapes

The author, on Christmas Eve 1985 Since I am in the mood of heavy ZX Spectrum retro action, I dug out all my old computer tapes in an attept to digitize and convert them. It turned out to be more difficult than I thought...

The first trouble was to find a tape player. I had disposed my last tape recorder a couple of years ago. The new ones I found at Amazon looked nice on the first sight. They could be connected to the USB port or even digitize the tapes straight to an USB stick. The customer reviews were scaring off: cheap plastic, poor sound, digitizing to USB stick was only possible on battery power... I had more luck on eBay, where I found a genuine 1990’s Aiwa Walkman (it’s even a recorder, with auto reverse and Dolby NR) in good condition for about the same price.

I connected the Walkman to my computer’s microphone input using a cable with 3.5mm stereo jacks, selected the correct tape type (Normal or CrO2), and turned off Dolby NR. Then I digitized right away, using Audacity for recording and post processing. I used 16 bits per channel, and a 44100 Hz sampling rate. The ZX Spectrum provided a mono signal, so I chose the left or right channel (depending on the quality) and discarded the other one. Mixing down the stereo signal turned out to be problematic, as well as using a lossy file format like ogg.

The WAV files can be loaded into the Fuse Emulator, but it’s better to convert them to TZX files, as they are much smaller. There are a few tools for that, for example audio2tape that comes with Fuse. I wasn’t satisified with the result though, as the generated TZX files contained many CRC errors. MakeTZX is also worth a try, as it supports digital filters, but I was unable to make it run on Linux. Some other converter tools are for Windows only, and thus not very interesting. 😉

So I found myself writing a set of TZX tools in Python. It contains tzxwav, that’s yet another tool for converting WAV files to TZX files, but is robust against poor audio quality. It took me three weeks of work, and about 30 hours of tape material, until it was able to successfully read almost all of my tape recordings.

An advantage of TZX files is that they contain the raw ZX Spectrum binaries, so they are very easy to extract. tzxcat allows to retrieve single binaries from TZX files, which can then be converted into PNG files, BASIC sources or whatever, provided there are converters for it.

What I have now are TZX files of all my old ZX Spectrum tapes. It was very interesting to rediscover my old files, screens, programs and source codes. In 1987 and 1988, I wrote a lot of more or less useful tools, designed several fonts and completed two demos.

Optimizations

On a slow processor like the Z80, it is essential to think about execution time. Often a clean approach is too slow, and you need to optimize the code to make it a lot faster.

The ZX Spectrum screen bitmap is not linear. The 192 pixel rows are divided into three sections of 64 pixel rows. In each of these sections, all the 8 first pixel rows come first, followed by the second pixel rows, and so on. The advantage is that when writing characters to the bitmap, you only need to increment the H register to reach the next bitmap row. The disadvantage is that a pixel precise address calculation is hell.

This is how the coordinates of a pixel are mapped to the address:

HL
1514131211109876543210
010Y7Y6Y2Y1Y0Y5Y4Y3X7X6X5X4X3

X2, X1 and X0 represent the bit number at the address. It can be used as a counter for right shift operations.

My first attempt was a straightforward code that shifted, masked and moved the bit groups into the correct places. It took 117 cycles. This is nice, but we can do better.

We need a lot of rotation operations to shift the bits to the right position. Rotation is a rather expensive operation on a Z80, because there are no instructions that rotate by more than one bit at a time. My idea was to divide the X coordinate by 8 (by rotating it three times to the right) and simultaneously shift Y3 to Y5 into the L register. With a similar trick, I could set bit 14 while rotating, which saved me another or operation with a constant.

This is the final optimized code. It takes the X coordinate in the C register, and the Y coordinate in the B register. The screen address is returned in the HL register pair. BC and DE are unchanged, so there is no need for expensive push and pop operations.

pixelAddress:   ld      a, b
                and     %00000111
                ld      h, a    ; h contains Y2-Y0
                ld      a, b
                rra
                scf             ; set bit 14
                rra
                rra
                ld      l, a    ; l contains Y5-Y3
                and     %01011000
                or      h
                ld      h, a    ; h is complete now
                ld      a, c    ; divide X by 8
                rr      l       ; and rotate Y5-Y3 in
                rra
                rr      l
                rra
                rr      l
                rra
                ld      l, a    ; l is complete now
                ret

It only takes 108 cycles, ret inclusive. Optimizing saved me 9 cycles (or about 8%). This doesn’t sound like much, but if the code is invoked in a loop, those 9 cycles are multiplied by the number of loop iterations.

I claim this is the fastest solution without resorting to a lookup table. Try to beat me! 😁

ZX Spectrum retro game programming

If you are a child of the 1980’s, you maybe remember the Sinclair ZX Spectrum. It was an affordable home computer that could be connected to a color TV set, and used compact cassettes as mass storage.

My first computer was a Sinclair ZX-81. I learned BASIC and also Z80 assembler on it. Soon the ZX-81 was replaced by a ZX Spectrum. I programmed a lot, wrote all kind of tools and a few demos. I always wanted to write a game together with my friends, but as teenagers we lacked the necessary persistence to bring such a project to the end. Then, on the day I got my Amiga 500, I quickly lost any interest in my good old Spectrum.

But it’s never too late... I just started a tiny little game project called Coredump, written in Z80 assembler for the good old ZX Spectrum. Why? Just because I can. Because I always wanted to. And because retro programming also means a lot of fun!

This first article is about the tool chain I am using. I will add more articles as the game grows and is (hopefully) completed some day.

Back in the 80’s, programming assembler on the ZX Spectrum was a very tedious task. I had to deal with cassette tapes (and their very slow access), an assembler that already consumed some of the scarce RAM, and I had no tools that simplified the development process. When I did a mistake and crashed the Spectrum, I needed to reload the assembler, the source code and the resources from tape. Often I also lost some of my work because when dealing with tapes, saving a source code is much more work than just pressing Ctrl-S, so I rather risked having to retype the changes after a crash.

Today it’s much easier to write retro software. I can develop it on my Linux machine, which is very fast and has a lot of storage space. I use a modern text editor and a lot of powerful tools. For testing, I just need to assemble a snapshot file and run it on an emulator, which takes less than a second. If the emulator crashes, no work is lost.

These are the tools I use for programming. All of them are available for Linux and MacOS, some also for Windows.

  • Fuse is an excellent ZX Spectrum emulator, with a very precise timing.
  • A decent editor. I started with Atom, but now I am using Eclipse because it fits better to my workflow. Just use your favorite editor.
  • zasm is a nice Z80 cross assembler that is also able to generate SNA files that run on the emulator.
  • Multipaint is an open source drawing tool that handles the limitations of the ZX Spectrum graphics (and believe me, there are limitations). It turned out not to be so useful for sprite and tile generation, because it does not offer a precise control of the paper and ink color that is used in the generated screen file.
  • So I also use Gimp for pixeling sprites and tiles. Maybe I will also use Inkscape later.
  • Tiled is an excellent map editor. I use it to design the world of my game.
  • Some self made helper tools convert the graphics and the world into the binary format that is used in the game. I use Java for these tools, just because I am most proficient with Java. There is no technical reason for that, just use the language you feel most comfortable with.
  • Finally, I use ant to stitch all the parts together and run the snapshot file.

The ZX Spectrum hardware is very simple and easy to understand (which also means that you have to do a lot of things without hardware aid). The Z80 processor has a simple instruction set. So retro programming is not just for the old-agers, but also for the young generation who is interested in a first approach to the hardware level of computers. It is also fun to get the most out of a limited and slow hardware.

There is a lot of documentation available in the net:

  • World of Spectrum has a lot of hardware documentation in the references section.
  • A quick overview of all Z80 instructions and their timings.
  • A commented ROM disassembly gives a first look at the Z80 assembler, and also offers some useful functions (like multiplication, the Z80 itself does not offer any multiply or divide instructions).

When I started looking for resources to the ZX Spectrum, I was surprised about how active the retro scene is. There are a lot of blogs offering tutorials that explain hardware tricks, and there is even a demo scene showing you things you’d never thought to be possible on that machine. After all, the Speccy is almost 35 years old now, and wasn’t famous for a powerful hardware even back at its time.

NetCologne VoIP einrichten

Seit Februar 2019 bin ich nicht mehr Kunde von NetCologne. Ich lasse den Artikel als Referenz hier stehen, weise aber darauf hin, dass er nicht mehr aktualisiert wird.

Vorab: Wenn möglich, sollte bei einer FritzBox bei den Internet-Zugangsdaten als Internetanbieter "weiterer Internetanbieter" – "NetCologne / NetAachen" ausgewählt werden. Die FritzBox holt sich dann alle Konfigurationsdaten vollautomatisch, inklusive der Konfiguration für die Telefonie. Falls euer Router diese Option nicht anbietet, findet ihr im folgenden Text vielleicht Hilfe.

Seit heute habe ich endlich VDSL, der ADSL-Anschluss mit Splitter und paralleler ISDN-Telefonie gehört damit endgültig der Vergangenheit an.

Leider war die Einrichtung von NetCologne-SIP auf meiner eigenen FritzBox alles andere als einfach, da ich nirgendwo im Internet brauchbare Informationen fand. Nach einigem Experimentieren hat es aber doch geklappt.

Auf der NetCologne-Einstellungsseite kann man sich ein SIP-Passwort generieren lassen und auch gleich die Login-Daten abholen. Das Generieren des Passworts dauert einen Augenblick, also Geduld. Wenn man mehrmals klickt, kann es sein, dass das angezeigte Passwort nicht das Richtige ist. Wenn man mehrere Rufnummern hat, braucht man für jede ein eigenes Passwort.

Für die fiktive Telefonnummer 0221-123456 erzeugt man dann auf der FritzBox eine neue Rufnummer mit folgenden Parametern:

Telefonie-Anbieter:Anderer Anbieter
Rufnummer für die Anmeldung:123456← Die Rufnummer ohne Vorwahl
Interne Rufnummer:123456← Ebenfalls nur die Rufnummer ohne Vorwahl
Benutzername:221123456← SIP-Username wie auf der Einstellungsseite
Kennwort:●●●●●●●●← Das SIP-Passwort von der Einstellungsseite
Registrar:sip.netcologne.de← SIP-Server von der Einstellungsseite
Proxy-Server:sip.netcologne.de← SIP-Server von der Einstellungsseite
STUN-Server:← Leer lassen

Die anderen Parameter lässt man am besten einfach, wie sie sind. Bei mir waren sie nach der automatischen Konfiguration wie folgt:

DTMF-ÜbertragungRTP oder Inband
Rufnummerunterdrückung:CLIR über *31
Rufnummerübermittlung:Deaktiviert← Rufnummer wird trotzdem übermittelt
Rufnummer für die Anmeldung verwenden:← kein Häkchen
Anbieter unterstützt Rückruf bei Besetzt:← kein Häkchen
Paketgröße in Millisekunden:20
Anmeldung immer über eine Internetverbindung:← kein Häkchen
Der Anbieter unterstützt MWI:← kein Häkchen
Der Anbieter unterstützt kein REGISTER-fetch:← Häkchen gesetzt
Anbieter kontaktieren über:nur via IPv4

Bei dem VDSL-Bitstream-Anschluss muss außerdem die VLAN-ID für Internettelefonie auf 7 eingestellt werden. Bei einem VDSL-Anschluss (ohne Bitstream) ist die VLAN-ID für Telefonie offenbar 10 (das kann ich bei mir aber nicht ausprobieren). Welche Anschlussart man hat, steht im Schreiben, das man von NetCologne bekommen hat.

Bei mir hat das so funktioniert. Aber die Werte wurden experimentell ermittelt. Im Zweifelsfall sollte man die NetCologne-Hotline anrufen (wie auch immer man das mit einem nicht funktionierenden Telefonanschluss schaffen möchte).


Nachtrag, 22.08.2017: Für den SIP-Server sollte sip.netcologne.de (oder was bei dir auf der Netcologne-Einstellungsseite steht) verwendet werden. Vorher stand hier im Artikel eine feste IP-Adresse, die aber anscheinend nicht mehr aktuell ist. Danke an Ralph für den Stuppser in die richtige Richtung.


Nachtrag, 12.11.2018: Durch eine Neukonfiguration meiner FritzBox wurden die Telefoniedaten automatisch von NetCologne bezogen. Ich habe die Angaben entsprechend zu dem geändert, was ich danach in meiner FritzBox vorfand.